IERGS5050 Al Foundation Models, Systems and Applications
Spring 2025

Transformers Part |: Basic Architecture

Prof. Wing C. Lau
wclau@ie.cuhk.edu.hk
http://www.ie.cuhk.edu.hk/wclau

mailto:wclau@ie.cuhk.edu.hk
http://www.ie.cuhk.edu.hk/wclau

Acknowledgements

Many of the slides in this lecture are adapted from the sources below. Copyrights belong to the original authors.

® Stanford CS25: Transformer United V4, Spring 2024, https://web.stanford.edu/class/cs25/
Instructors: Div Garg, Steven Feng, Seonghee Lee, Emily Bunnapradist ;
Faculty Advisor: Prof. Chris Manning,
Overview Slides https://docs.google.com/presentation/d/10XPs3L XtIVIsVbwTyGjAW] aWvak9cluNC4uhkS6glk/edit?usp=sharin
Stanford CS336: Language Modeling from Scratch, Spring 2024
O by Profs. Tatsunori Hashimoto, Percy Liang, https://stanford-cs336.github.io/spring2024/
Stanford CS229S: Systems for Machine Learning, Fall 2023
by Profs. Azalia Mirhoseini, Simran Arora, https://cs229s.stanford.edu/fall2023/
Stanford CS224N: Natural Language Processing with Deep Learning, Winter 2021
by Prof. Chris Manning, https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1214/
Stanford CS231n: Deep Learning for Computer Vision, Spring 2023
by Prof. Fei-fei Li, https://cs23 In.stanford.edu/slides/2023/
CMU 11-667: Large Language Models: Methods and Applications, Fall 2024
by Profs. Chenyan Xiong and Daphne Ippolito, https://cmu-llms.org
CMU 11-711: Advanced Natural Language Processing (ANLP), Spring 2024
by Prof. Graham Neubig, https://phontron.com/class/anlp2024/lectures/
UPenn CIS7000: Large Language Models, Fall 2024
by Prof. Mayur Naik, https://llm-class.github.io/schedule.html
Princeton COS597G: Understanding Large Language Models, Fall 2022
by Prof. Danqi Chen, https://www.cs.princeton.edu/courses/archive/fall22/cos597G/
UWaterloo CS886: Recent Advances on Foundation Models, Winter 2024
by Prof. Wenhu Chen, https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/
UMD CMSC848K: Multimodal Foundation Models, Fall 2024
by Prof. Jia-Bin Huang, https://jbhuang0604.github.io/teaching/CMSC848K/

https://web.stanford.edu/class/cs25/
https://docs.google.com/presentation/d/1oXPs3LXtIVIsVbwTyGjAWj_aWvak9c1uNC4uhkS6glk/edit?usp=sharing
https://stanford-cs336.github.io/spring2024/
https://cs229s.stanford.edu/fall2023/
https://phontron.com/class/anlp2024/lectures/
https://llm-class.github.io/schedule.html

Natural Language Processing (NLP) & Language Modeling

e NLP (natural language processing) tasks
o Translation, question answering, recommendations, sentence completion, etc
e Language model
o Model the probability of a sequence of tokens in a text
e Examples
o | was eating __.
: :nb:ui::wz(g%?; By = Bl s wselip) = Hp(:z:t|:z:<t)
m popcorns (0.0001)
o lwasina __.|was eating popcorns
m house (0.01)
m mansion (0.001)
m movie theater (0.2)

Representing Words as Discrete Symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel —a localist representation

Means one 1, the rest Os

Such symbols for words can be represented by one-hot vectors:
motel=[000000000010000]
hotel=[00000001000000 0]

Vector dimension = number of words in vocabulary (e.g., 500,000+)

Problem with Words as Discrete Symbols

Example: in web search, if a user searches for “Seattle motel”, we would like to match
documents containing “Seattle hotel”

But:

motel=[000000000010000]
hotel =[000000010000000]

These two vectors are orthogonal

There is no natural notion of similarity for one-hot vectors!

Solution:
* Could try to rely on WordNet’s list of synonyms to get similarity?
* But it is well-known to fail badly: incompleteness, etc.

* Instead: learn to encode similarity in the vectors themselves

Representing Words by their Context

Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

* “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)
* One of the most successful ideas of modern statistical NLP!

When a word w appears in a text, its context is the set of words that appear nearby
(within a fixed-size window).

We use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...
...saying that Europe needs unified banking regulation fo replace the hodgepodge...
...India has just given its banking system a shot in the arm...

N 4

These context words will represent banking

Word Vectors (aka Word Embeddings)

We will build a dense vector for each word, chosen so that it is similar to vectors of words
that appear in similar contexts, measuring similarity as the vector dot (scalar) product

4 N 4 A
0.286 0.413
0.792 0.582
Dl Zf -0.007
banking = -0.107 monetary = 0.247
0.109 0.216
-0.542 -0.718
0.349 0.147
_ 0.271/ _ 0.051/

Note: word vectors are also called (word) embeddings or (neural) word representations
They are a distributed representation

Word2vec: How to learn the Word Embedding

Input projection output

Word2vec is a framework for learning word vectors v
(Mikolov et al. 2013)

¢« | Wt1)
Idea:

w(t) -
* We have a large corpus (“body”) of text: a long list of words
* Every word in a fixed vocabulary is represented by a vector A Wt
* Go through each position t in the text, which has a center
word ¢ and context (“outside”) words o w(t+2)
1

* Use the similarity of the word vectors for ¢ and o to calculate

the probability of o given ¢ (or vice versa) .
—— o . . Skip-gram model
* Keep adjusting the word vectors to maximize this probability (Mikolov et al. 2013)

Source: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
For details, refer to: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n winter2023 lecture1 notes draft.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n_winter2023_lecture1_notes_draft.pdf

Word2vec Overview

Example windows and process for computing P(wt+j | wt)

P(we_y | we) P(Wey | Wt|)
P(wi_q | wy) PWeiq [W)

problems turning banking crises as

\ J \ J
T Y L Y J

outside context words center word outside context words
in window of size 2 at position t in window of size 2

Source: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
For details, refer to: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n winter2023 lecture1 notes draft.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n_winter2023_lecture1_notes_draft.pdf

Word2vec Overview

Example windows and process for computing P(WH.J' | Wt)

P(We—p | we) P(Weyo | We)

problems turning into crises as

Y Y L .)
outside context words center word outside context words
in window of size 2 at positiont in window of size 2

Source: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
For details, refer to: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n winter2023 lecture1 notes draft.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n_winter2023_lecture1_notes_draft.pdf

Word2vec: Objective Function

For each positiont =1, ...,

T, predict context words within a window of fixed size m,

given center word wy. Data likelihood:

i

Likelihood = L(8) :l l l l P(wtﬂ- | Wt;Q)

8 is all variables t=1 _m'SJSm
to be optimized J#0
l sometimes called a cost or loss function

The objective function J(0) is the (average) negative log likelihood:

J(0) = ——logL(H) = ——Z Z logP(WH] | We; 6)

t= —m<]<m
Jj#0

Minimizing objective function & Maximizing predictive accuracy

Source: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf

For details, refer to: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n winter2023 lecture1 notes draft.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n_winter2023_lecture1_notes_draft.pdf

Word2vec: Objective Function

e We want to minimize the objective function:

J(6) = ——z Z 108P(Wt+1 | we; 9)

t=1 —m<]<m
j#0

* Question: How to calculate P(WH_]' | we; 9) 2

* Answer: We will use two vectors per word w:

vw When wis a center word These word vectors are subparts of

* uy Whenwis a context word } the big vector of all parameters 0

* Then for a center word ¢ and a context word o:

exp (Uo Vc)
Ywev €Xp (Ui vc)

Source: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
For details, refer to: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n winter2023 lecture1 notes draft.pdf

P(olc) =

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n_winter2023_lecture1_notes_draft.pdf

Word2vec: Prediction Function = Prob[o|c]

(2 Exponentiation makes anything positive
1 Dot product compares similarity of o and c.

- By =1.0=3%; ;v
EXp)/ Larger dot product = larger probability

wev €Xp(UwVc) _
3 Normalize over entire vocabulary

to give probability distribution

P(o|c) =

* Thisis an example of the softmax function R" — (0,1)" «—_ Open
exp(xl) reglon

? 1exp(x;)

* The softmax function maps arbitrary values x; to a probability distribution p;

softmax(x;) = = p;

* “max” because amplifies probability of largest x;
: : . : 5 \ But Sort Of d WEird name
* “soft” because still assigns some probability to smaller x; T A g T

* Frequently used in Deep Learning

Source: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
For details, refer to: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n winter2023 lecture1 notes draft.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n_winter2023_lecture1_notes_draft.pdf

Word2vec: To Train the Model

To train a model, we gradually adjust parameters to minimize a loss

2=x"+2
» Recall: 6 represents all the T, e o
aardvar B A N
model parameters, in one v,
long vector
* |n our case, with Ve £ g
. i . zebra 2dV st kil 7T
d-dimensional vectors and 0= Ui €R TR
V-many words, we have 2 Uy b W
* Remember: every word has : ot

two vectors

Uzebra

* We optimize these parameters by walking down the gradient (see right figure)
 We compute all vector gradients!

Source: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
For details, refer to: https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n winter2023 lecture1 notes draft.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/slides/cs224n-2024-lecture01-wordvecs1-public.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1244/readings/cs224n_winter2023_lecture1_notes_draft.pdf

The problematic P[o|c]

The denominator is difficult to evaluate as
it involves the embedding of ALL words in the Universe (Vocabulary)

=> Use a trick to circumvent the problem via Negative Sampling

15

What is Word2vec ?

» word2vec isS not a single algorithm

» Itis a software package for representing words as vectors, containing:

» Two distinct models

» CBoW

» Skip-Gram (SG)
» Various training methods

» Negative Sampling (NS)

» Hierarchical Softmax
» A rich preprocessing pipeline

» Dynamic Context Windows

» Subsampling

» Deleting Rare Words

» We will focus on the Skip-Grams with Negative Sampling (SGNS) approach !

Slide by Omer Levy

SGNS starts with SAME basic setting

* SGNS finds a vector v, for each word ¢ in our vocabulary V-
e Each such vector has d latent dimensions (e.g. d = 100)

* Effectively, it learns a matrix C whose rows represent the center vectors v,

* Key point: it also learns a similar auxiliary matrix O of outside context vectors
* In fact, each word has two embeddings: v, and 1,

d d

t::::j & c:wampimuk =
(—3.1,4.15,9.2,-6.5, ...)
O 7

NN} + S0

‘wampimuk = 4_5 “word2vec Explained...”
(—5.6, 2.95,1.4,—-1.3,) Go|dberg & Levy, aﬁ(iv

2014

Skip-Grams with Negative Sampling (SGNS)

You first observe (actually sample) the following sentence from the training
COrpus:

Marco saw a furry little wampimuk hiding in the tree.

“‘word2vec Explained...”
Goldberg & Levy, arXiv
2014

Skip-Grams with Negative Sampling (SGNS)

Marco saw a wampimuk the tree.

center word utside context word

wampimuk furry

wampimuk little D (observed data)
wampimuk hiding

wampimuk in

“word2vec Explained...” Goldberg & Levy, arXiv 2014

Skip-Grams with Negative Sampling (SGNS)

Maximize [[;0(¢ - 0;)
* 0, was observed with ¢
where o(z) = 1/ [1+exp(- z)]

center word outside context

wampimuk furry
wampimuk little
wampimuk hiding
wampimuk in

AND Minimize []; o(¢-7,")

= Maximize [[; [1-o(C-0.")]

was NOT observed with c, they are
from the set of Negative Samples
randomly generated by the algorithm.

center word NOT outside context

wampimuk Australia
wampimuk cyber
wampimuk the
wampimuk 1985

Take Log and the optimization problem becomes “similar” to the training of a binary logistic-regression classifier:

1 1
log ——MM log(1 —
arg mg)x Z Og 1 _|_ e Ve Vw + Z Og(]_ _|_ e Ve Vw

(w,c)eD (w,c)eD’

1 1
= 1 1
) arg mgx Z Og 1 + e Ve Vw + Z Og(1 + eVe ' Vw)
(w,c)eD (w,c)eD’

Summary: How to learn Word2vec Embeddings via SGNS

For a vocabulary of size V: Start with V random 300-
dimensional vectors as initial embeddings

Train a logistic regression classifier to distinguish words
that co-occur in corpus from those that don'’t

Pairs of words that co-occur are positive examples

Pairs of words that don't co-occur are negative examples

Train the classifier to distinguish these by slowly adjusting
all the embeddings to improve the classifier performance

Throw away the classifier code and keep the embeddings.

21

NLP Tasks as Sequence to Sequence Modeling

22

NLP Tasks as Sequence to Sequence Modeling

» Example Scenarios
» Text - Text (e.g. Q/A, translation, text summarization)

» Image - Text (e.g. image captioning)

Output
1 V2 V3 Va sequence

Input
sequence | 7 %) X4

NLP Tasks as Sequence to Sequence Modeling

» Example Scenarios

» Text - Text (e.g. Q/A, translation, text summarization)

» Image - Text (e.g. image captioning)

» How? Usually Encoder-Decoder models

» e.9. RNNs, LSTMs, Transformers

ENCODER

Input
sequence | 7 %) X4

state

context
vector

DECODER

Output
sequence

Recurrent Neural Networks (RNN) — a Seq2Seg NN model

Key idea: RNNs have an

T “‘internal state” that is
/ updated as a sequence is
processed

f

! f

X

Yi
I
.
T
X X,

2 3

An RNN “Unrolled” along the Time axis

Recurrent Neural Networks (RNN)

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

yt =fWhy(ht)

output / new state

another function
with parameters W _

hy|= fW(h’t—la iBt)

new state / old state input vector at x
some time step

some function
with parameters W

Notice: the same function and the same set
of parameters are used at every time step.

(Vanilla) Recurrent Neural Networks (RNN)

The state consists of a single “hidden” vector h:

y hy = fW(ht—la xt)

T |
m> ht — tanh(Whhht_l T tha:t)

X Yt = Whyht

Sometimes called a “Vanilla RNN” or an
“‘Elman RNN?” after Prof. Jeffrey EIman

Computational Graph for an RNN

Y, Ys Y3 Yt

T ! ! !

ho =y 1 e P e T
/T T T
X X X
W 1 2 3

Note the reusing of the SAME weight matrix fW at every time-step !

Example: Character-level Language Model

target chars:

Vocabulary:

[h e I O] output layer
Example training

Seq uence: hidden layer
“hello”

hi = tanh(Wpphi—1 + Wapat)

input layer

input chars:

W_hh|

1.0 0.5
2.2 0.3
-3.0 -1.0
4.1 1.2
0.3 1.0
-0.1 » 0.3
0.9 0.1
1 0
0 1
0 0
0 0
Hh” “e"

Example: Character-level Language Model

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time, feed
back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

j

ulﬂ/\

“O”
t i t

03 25 kT A1
84 20 A7 02
.00 50 68 08
A3 .05 .03 79
t t t t
1.0 05 0.1 0.2
22 0.3 05 15
-3.0 -1.0 1.9 -0.1
4.1 1.2 -1 2.2
I O O O
0.3 1.0 0.1 |w hnl-03
-0.1 0.3 0.5 > 0.9
0.9 0.1 -0.3 0.7
N L O A W 2%
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
th lle" “I!!

Example: Character-level Language Model

(Wi Wi Wig W 1T wy]
[Wyq Wy Wos Wi, 1 [0] = W]
(W3 Wap Wyg Wi 1 [0] [wy]

[O]

Matrix multiply with a one-hot vector just
extracts a column from the weight matrix.
We often put a separate embedding layer
between input and hidden layers.

target chars:

output layer

hidden layer

Embedding
layer

input layer

input chars: «

“e” ;i i ‘F 0

1.0 0.5 0.1 0.2
2.2 0.3 0.5 15
-3.0 1.0 1.9 -0.1

4.1 1.2 1.1 2.2
L [
0.3 1.0 0.1 |w hn| -0-3
-0.1 ~ 0.3 .05 —> 0.9

0.9 0.1 0.3 0.7

t t i t

.03 25 M 11

A3 20 A7 A7

.00 .05 68 68

84 50 .03 03

[A A
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

h” 5" It oy

Weaknesses of early NN-based NLP approaches

» Short context length
» “Linear” reasoning - no attention mechanism to focus on other parts

» Earlier approaches (e.g. word2vec) do not adapt based on context.

Seq2Seq Models w/ Neural Nets: the Pre-Transformer Era

The inputs to each unit consists of
the current input x;, previous hidden
state hy4, and previous context ¢

e Recurrent Neural Networks (RNNSs)
e Long Short-Term Memory Networks (LSTMs)

e Capture dependencies between input tokens

e Gates control the flow of information

Unfold ‘ . A single LSTM unit displayed as a
tati h.
Cj-) _»- - -_» computation grap /

The outputs are a new hidden state h,
@ @ @ and an updated context c..

A simple RNN shown unrolled in time. Network layers are recalculated for
each time step, while weights U, V and W are shared across all time steps.

Better Capturing of Long-Range Dependence
using LSTM for Seq2Seq Modeling

Input: sequence x4, ..., Xt Output: sequence y;, ...,y
he = f(xe, he—1) St = 9(Vt-1,St-1,€)
Initial state

» Encoder (LSTM) and decoder (LSTM)
Tr
P s, ’51'0"52'&53'0’54

» Fixed-length context vector
| O | | 1t

S S | DO "

Context vector
ENCODER DECODER

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Proceedings of the 27th International Conference on Neural Information
Processing Systems (NIPS), 2014, pp. 3104-3112.

LSTM still suffers from Information Bottleneck

» Encoder (LSTM) and decoder (LSTM)
» Fixed-length context vector (bottleneck)

Input: sequence x4, ..., Xt

= f(x¢ he—q)

Output: sequence y;, ...

St = 9(Vt—1,St-1,C)

Initial state

’So

X1 Xy X3 Xy

ENCODER

>

:yT/

11

Context vector

EDELE

DECODER

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” in Proceedings of the 27th International Conference on Neural Information

Processing Systems (NIPS), 2014, pp. 3104-3112.

Attention Timeline

1990s

2014

2017

2018

2018-2020

2021-2022

2024

Prehistoric Era

Rule-based methods, parsing, RNNs, LSTMs

Simple attention mechanisms

Beginning of transformers

Attention is all you need

Explosion of transformers in NLP

BERT, GPT-3

Explosion into other fields

Explosion into other fields: ViTs, Alphafold-2.
Start of Generative Era
Codex, Decision Transformers, GPT-X, DALL-E

Present Day
Huge models, more applications: Chat-GPT, GPT-4, Gemini,

Llama and open-source LLMs, Whisper, Robotics Transformer,

Stable Diffusion, Sora, LLM Agents, Multimodal, and so much
more...!

Future (?!)

36

Sequence to Sequence with RNNs + Attention

» ldea! Use a different context vector for each timestep in the decoder

St = 9(Ve-1,St—1,Ct)
» No more bottleneck through a single vector

» Craft the context vector so that it “looks at” different parts of the input
sequence for each decoder timestep

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations
(ICLR), 2015.

Sequence to Sequence with RNNs + Attention

Compute context vector

Attention weights
(normalize alignment

scores)

Alignment scores
eti = fart(Se-1, M)

ENCODER

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations

(ICLR), 2015.

<>

So

Initial state

Ct = Z agih;

Find s;: t =1

i

St = 9(Vt-1,St—1,€¢)

Y1

a; represents the probability that
the target word y, is aligned to, or
translated from, a source word x;

S1

a,; reflects the importance of the
annotation h;with respect to the

previous hidden state s;_; in
deciding the next state s; and
generating y;

—

Yo

Context
vector

DECODER

Sequence to Sequence with RNNs + Attention

Compute context vector

Find s,: t =2
Ct = Zat,ihi
i

Attention weights

a2,2 @23 2,4 (normalize alignment

scores) St = 9(Ve—1,St-1,Ct)
‘ | | ‘ 1 Y2

Alignment scores

; 227 €23 €24 i = fare(Se—1, i)
1t 1 i 4

hl-e-:hz-e-th3-e-=h4 N . l—sl-ebsz

Y ‘ ‘ it st #

X2 X3 X4 —t— Yo C Y1
Context
ENCODER vector DECODER

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations
(ICLR), 2015.

Sequence to Sequence with RNNs + Attention

Compute context vector

A1 at2 a3 At 4
€t1 €t2 €t3 €ta

Attention weights
(normalized alignment

scores)

Alignment scores

eti = fatt(Se-1,hi)

Finds;:t=t
Ct = Zat,ihi

i

St = 9(Ve—1,St—1,Ct)

I L1

<>

ENCODER

So

Initial state

Lt

Context
vector DECODER

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations

(ICLR), 2015.

Sequence to Sequence with RNNs + Attention

All steps are differentiable,
Compute context vector | so we can backpropagate

Attention weights
(normalized alignment

Alignment scores

¢ = Z ot iy through everything

i

St = 9(Ve—1,St—1,Ct)

I L1

€1 €t,2 b €ta = fate(Se-1,hi)
hl hZ ﬁ h3 h4_ <> N
A Initial state

Encoder is bi-directional: allows for the annotation of each
word to summarize both preceding and following words.

X1 X2

X3

ENCODER

X4

Lt

Context
vector DECODER

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations

(ICLR), 2015.

Sequence to Sequence with RNNs + Attention

L . L
Application: translation 2® _ ,858us 33 =
F oS mwag 26 SEI 4 v

L

. . accord

Each pixel shows the weight a, ; of sur

the annotation of the i-th source la

zone

word for the t-th target word. économique

européenne

a

été

signé

en

aolt
1992

<end>

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations
(ICLR), 2015.

Sequence to Sequence with RNNs + Attention

L] - 30 1 I 1 I 1
Application: ; z z z 5
text translation 25
© 20|
S |
RNN: ; 151 .
RNNenc = : § Say s,
M 10 — RNNsearch-50 f................ TR Biawe s s s SRR ~ e J
----- RNNsearch-30 |: Sy *5\ R =
_ 5H - - RNNenc-50 |- S A PR S———— y
RNN + attention: - .- RNNenc-30 o ‘ .
0 | | | | |
RNNsearch 0 10 20 30 40 50 60

Sentence length

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly Learning to Align and Translate,” in 3rd International Conference on Learning Representations
(ICLR), 2015.

Motivating Transformers by
Understanding the Limitations of Recurrent Models

Challenge 1: Modeling long-range dependencies
Challenge 2: Optimization due to vanishing and exploding gradients

Challenge 3: Slow (sequential, serial) bottleneck

Caveating this discussion: while the challenges we'll discuss originally motivated
Transformers, many have continued to make progress on RNNs over the years (S4, Mamba,
Linear Attention, GLA, Based, etc.)

https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2312.06635
https://hazyresearch.stanford.edu/blog/2023-12-11-zoology2-based

Challenge 1: Long Interaction Distances

E.g.“The counselor helped
frame the situation.”

Performance degrades
as the distance between
words increases due to
memory constraints:
Diluted impact of earlier
elements on output as
sequence progresses

Output:

Input:

yl y2 y yt+'|
A A A A
o o o o
. a 2 ‘ a 3 at—1 . at . at+1
o o o o
o o o o
% %, Xt Xt+1
The counselor situation

~_

“The" has gone through t layers
before getting to “situation”

While RNNs + “Attention” has made some progress, the

coupling of the “sequential” structure of RNN with Attention
still creates difficulties

Y, Y, 2
: v .
® | S ® S
Key idea of the Decoders :_‘, :_2, iL:i,:
[_J (]
. . (] L J (]
RNN + Attention operation:
All tokens interact with all
other tokens'representations e 3 |83 2, |®| a |®
Encoders 4 el e — —lel—o
([[J (]
! i t i
Xl X2 Xt Xt+1

Challenge 2: RNNs/ LSTMs are difficult to train!

Backpropagation through many
timesteps/‘layers”...

Tmet=0 Timet=1 Timet=2 Timet=3 Tmet=4 Timet=35 Tmet==6.. Timet= 100

Recall: backpropogation is about
4 s . s .
O o o o) O

updating the parameters in a way that ;
reduces the loss. We multiply with

respect to each set of parameters at

each timestep.

(@)
o
O
O)
FN
o

o+ 0000

Figure Source: O'Reilly Media

Backpropagation through Time

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

Challenge 2: RNNs/LSTMs are difficult to train!

If the value we are multiplying is large,
our gradients will grow exponentially!

The model becomes unstable! Tmet-0 Tmet-1 Tmet-2 Tmet-3 Tmet-4 Tmet-5 Tmet-6. Tmet-100
o _[o
-
o) (@
If the value we are multiplying is s N A R R . K .
small, our gradients will get smaller @ O ® © o o o

each timestep, goingto 0. The

network stops learning/learns too
slowly.

Figure Source: O'Reilly Media

Challenge 3: Parallelizability

Output: |y, Y, Y, Yo

A A A A

o ® o o

‘ a2 ‘ a3 at—1 . at . at+1
a1 — — — s ... — — —_

o o o o

® o o o
Input: | X, X, X, X

Each time step needs to be processed before we can move
onto the next step.

Decoupling “Attention” from RNNs

» Recall: attention determines the importance of elements to be passed
forward in the model.

» These weights lets the model pay attention to the most
significant parts

» Objective: a more general attention mechanism not confined to RNNs
» We need a modified procedure to:

1. Determine weights based on context that indicate the
elements to attend to

2. Apply these weights to enhance attended features

Self-Attention and Transformers

Layer:\57¢\Attention:\ Input - Input s

e Allows to “focus attention” on particular aspects of om
the input while generating the output. Ty i
e Done by using a set of parameters, called "weights," didn_. didn_
that determine how much attention should be paid to t t
each input token at each time step. "y e
e These weights are computed using a combination of be:;:’:;— :‘;:‘u;e
the input and the current hidden state of the model. it_ it

g

QK*
Vdy

Attention(Q, K, V) = softmax(WV

In encoding the word "it", one attention head is
focusing most on "the animal”, while another is
focusing on "tired". The model's representation
A. Vaswani et al. Attention Is All You Need. NeurlPS 2017. of the word "it" thus bakes in some of the

representation of both "animal" and "tired".
https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Transformers — the current "standard” for
building LLMs and Foundation Models

AlexaTM,
InstructGPT,
Chain Of
BERT Thought, ToolFormer,
g RLHF (Anthropic), LLaMA.
GPT-1, ChatGPT Bard
Word2vec Attention Transformer GPT-2 BART GPT-3
| | | | t | | |
| | | | | | | |
2013 2015 2017 2018 2019 2020 2022 2023

53

Slides for video from:
Prof. Jia-Bin Huang
University of Maryland, College Park

https://www.youtube.com/watch?v=rcWMRA9E5RI

4 N

transiormer
_)
=) =)
What? How? Why

[en])

How are you? —>

&

transtormer

(1]

— TRUFIES 7

)

Sequence-to- Sequence model

L'..J_._____.@

fR 45 Iz g8 05 ... ? <end>

- NIV YR PR

Encoders > Decoders

K I transformer ! /
@ How are you? <start>

L'.._l_.______.@

fR 4 Nz 68 0% ... ? <end>

- NIV YR PR

Encoders > Decoders

T transformer T /

| |
How are you? <start> {}

L lsa _ (z0]

fR 4 Nz 68 0% ... ? <end>

- NIV YR PR

Encoders > Decoders

K I transformer ! /
@ How are you? <start> {R

Llsa (2n]

fR 47 Nz 68 0% ... ? <end>

- NIV YR PR

Encoders > Decoders

\ T transformer T /

| |
How are you? <start> {} ¥

L=l . (z4]

fR 47 Nz 68 0% ... ? <end>

- NIV YR PR

Encoders > Decoders

\ T transformer T /

| |
How are you? <start> {} ¥

L=l . (z0]

fR 4 Iz g8, 05 ... ? <end>

- 17 WYER P

Encoders > Decoders

K I transformer ! /
@ How are you? <start> {R 4F 5

L. 1 (z0]

R 0z 8 15 ... ? <end>

- NIV YR PR

Encoders > Decoders

K I transformer ! /
@ How are you? <start> {R 4F 5

L. 1 (z0]

fR % 0z g8 0% ... ? <end>

- 17 WYER P

Encoders > Decoders

K I transformer ! /
@ How are you? <start> {R 7 [?

LI (&)

fR % 0z g8 0% ... ? <end>

- NIV YR PR

Encoders > Decoders

\ T transformer T /

l |
How are you? <start> {R F § ?

AUT@FT@T@SSEV@ I_—_—_—_-_—_—_—_I, @

fR % 0z g8 0% ... ? <end>

- NIV YR PR

Encoders > Decoders

K I transformer ! /
@ How are you? <start> {R 4F I ? <end>

Encoders

Y

How are you?

Tokenization

Many words map to one token, but some don't: indivisible.
SN ST SN SN SN SN JE SN SN SN S SR 2 S

8607 4339 2472 311 832 4037 11 719 1063 1541 | 956 | 25 3687 23936 13

A\Z c

at dog bear cow indiv
* 1y 017 101 107 07
0 1 0 0 0
. 0 0 1 0 0
One-hot encoding ol ol lo| |1 0 Value 1 at
tokens |0 0 0 0 Of 3687t
J : : : : : entry
ol Lol Lol Lo 0

TOKEN EMBEDDING

One-hot encoding

. : cat dog bear co indiv

o Q 11 (0] 01 [O 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0 Value 1 at
A O e
: : : : : entry
-0- -0- 04 LO- -0-

TOKEN EMBEDDING

A
@ cat dog bear co indiv
s 11 (07 07 O 01
~ 0 1 0 0 0
< — o] |o| [1] [o 0
\ 0 0 0 1 0 Value 1 at
G of |of [of |o 0| 3687
: : : : : entry
ol Lol Lol [Lo 0-

Embedding Space

TOKEN EMBEDDING

A
L Ws @ «— # tokens —
et 0.5 i :
« — 27l
ool 1 |

Embedding Space Embedded Embedding Matrix
token

cCoor oQ

:O eeoe

TOKEN EMBEDDING

S —@

- ~
4 N

-

A

>

Embedding Space

I 05 I < #tokens >
2.7

d|1.2] = d

ool

Embedded Embedding Matrix

token

© O ORr OQ

:O eeoe

TOKEN EMBEDDIN

e ' Apple

;,'df\:@
- I "0.57
> 2.7
‘ d [1.2
O Loz
Embedding Space Embedded

token

- &

< # tokens

Embedding Matrix

© O ORr OQ

:O eeoe

TOKEN EMBEDDIN A &

| bought an apple and an orange.
e ' Apple

% N
@ | bought an apple watch.d
8

(@)

:'.:;‘: / 05 < # tokens > (1)
. gl 0

@ d|12| =d - o

: 0

ﬁ l 0.2 i :

-

Embedding Space Embedded Embedding Matrix
token

Encoder

))) i 0 ¥ s
Embedded
Tokens
ok 4 4) 4 4 A A
oken
Embedding M{E leE Vlle Ml/E VV|E Vllfg VI|/E
Tokens | bought an apple and an orange

!

!

!

|

A

Vs

Feed Feed Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward Forward Forward
A A A A A
Embedded
Tokens
Token t t t t t t t
Embedding | WE Wg Wg Wg Wg Wg Wg
! ! T | ! T I

Tokens | bought an apple and an orange

A

)L

!

|

A

|

A

Vs

Feed Feed Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward Forward Forward
A A A A
Embedded
Tokens
Token t t t t t t t
Embedding | WE Wg Wg Wg Wg Wg Wg
! ! T | ! T I

Tokens | bought an apple and an orange

A

Feed

A

A

A

JoUod

A

A

)L

Feed

»

orange

an

N

\ /N
\x&whﬁtﬁvﬁv
IONI

and

)
NS
‘@w.@/«‘%

apple

4

) oo

an

~7
222%2?Zézzﬁ/‘x2%29”Q¥§é%’AQ§§§/;!§§§§§ e\

Vs

W

bought

W

Embedded
Tokens
Embedding

Token
Tokens

!

!

!

!

!

|

A

Vs

Feed Feed Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward Forward Forward
A A A A A
{ Self-Attention J
Embedded
Tokens
Token t t t t t t t
Embedding | WE Wg Wg Wg Wg Wg Wg
T ! T | ! T T
Tokens | bought an apple and an orange

Self-Attention

Embedded
Tokens

Tokens |

8

[]
- fappli@>
B

Embedding Space

bought an apple and an

orange

Self-Attention @ €
A

apple

Embedding Space

Embedded
Tokens

Tokens | bought an apple and an orange

Self-Attention @ g
A
~ apple
V/ .

Embedding Space

Embedded
Tokens

Tokens | bought an apple watch

Self-Attention @ .

oy apple sl
s
S

Embedding Space

Embedded
Tokens

Tokens | bought an apple watch

Self-Attention e €
A

Embedding Space

Embedded
Tokens

Tokens | bought an apple watch

Self-Attention @ €
A

Embedding Space

Embedded
Tokens

Tokens | bought an apple watch

Self-Attention

= X, X5

Embedded
rokens ¥1€ R? X€ R4 x3€ R* X,€ RY Xs€ RY

Tokens | bought an apple watch

A1 s, a3 44 A5
1 0.082 $ 00495 1 00199 % 06034 1 0.2452

Softmax
exp(a4,l-)
% exp(as,;)

’ —
Ay =

Uys
= xI X5

Uy3

Embedded
Tokens X1

Tokens | bought an apple watch

! ! !
U1 Uy 2 Uy3 Ay 4 Uy

4 i\ 1
[Softmax

Q41 Ay Uy3
_ T
= X, X3

Embedded
Tokens X1

Tokens | bought an apple watch

! ! ! !
d41 Ay Uy 3 Oy 4 Ay s

4 i\ 1
[Softmax

Q41 Ay Uy3
_ T
= X, X3

Embedded
Tokens X1

Tokens | bought an apple watch

Updated X, = Qg1X1 + QuX; + QuaX3 + AuXs + AysXs
feature

A watch a1 ay 7 ay 3)4 ay s
t t t t
[Softmax]
apple 41 Ay,2 4,3 Ay
ki =xn = xJx; = xJxs
an bought
Embedded
Tokens X1 X2 X3 Xy X

Tokens | bought an apple watch

Updated Xy = (u1X7 + QuoXp + Qa3X3 + QuXs + AysXs
feature

A watch 4,1 a2 % @44 Ay
t t t
[Softmax]
apple
| A4 A42 a4,3 A45
> C = X} X3 = X} Xs
an bought
Embedded
Tokens X1 X2 X3 Xy X

Tokens | bought an apple watch

Updated Xy = (u1X7 + QuoXp + Qa3X3 + QuXs + AysXs
feature

Ay ay 7 ay 3 o s
delicious apple t t ¢ t y
[Softmax]

Ay Uy Uy3

= xlxg = xlxs

Embedded
Tokens X1

Tokens | bought an apple watch

! ! !
U1 Uy Uy3 Ay 4 Uy

t t t t
[Softmax]
Embedded
Tokens X1 X2 X3 X4 -

Tokens | bought an apple watch

I} ! ! !
X1 %) Uy 3 Oy 4 Ay s

t t t t
[Softmax]
Embedded
Tokens X1 X2 X3 X4 -

Tokens I bought an apple watch

WV

/ ’ ! ! ! y
Updated Xq = @®41V1 T XV + Qu3V3 + Qv + AasVs
feature

U1 “4’1,2 az’m Uy 4 0‘4’1,5
t t t t
[Softmax]
Embedded
Tokens X1 X2 X3 X4 -

Tokens | bought an apple watch

WO

WV

Updated xil = w° (C(fmvl + Quav, t Ay3Vg + Auav, T AsVs)
feature
— z a‘,l_‘l WO WV xl
i
afm “4’1,2 az’m 5;2,4 0:’1,5
€ Rdde t t t
[Softmax]
E de)(d
E de)(d
Embedded
Tokens X1 X2 X3 Xy X
Tokens

I bought an apple watch

WO

WV

Updated xil = w° (C(fmvl + Quav, t Ay3Vg + Auav, T AsVs)
feature
— z a:l_‘l (WO WV) xl
i
afm “4’1,2 az’m 5;2,4 0:’1,5
€ Rdde t t t
[Softmax]
E de)(d
E de)(d
Embedded
Tokens X1 X2 X3 Xy X
Tokens

I bought an apple watch

€ de)(d

€ de)(d

Embedded
Tokens

Tokens

! ! !
az1 a2 a3 A3 4 a5

f t f f t

Softmax]

€ de)(d

€ de)(d

Embedded
Tokens

Tokens

! ! !
az1 az» a3 A4 a5

f t f f t

Softmax]

WO

WV

Updated xlz = WO(“Q,1U1 + @220, + Q235 + Qv + U255)

feature

az1 “ﬁ,z afés ‘3;2,4 0?,5
f
dxd
€ R4*%v [Softmax]
Embedded
Tokens X1 X2 X3 X4 -

Tokens | bought an apple watch

Total weights: 175,181,291,520
Organized into 27,938 matrices

& 6pPT-3

, 12,288 50,257
Embedding d_embed * n_vocab = 617,558,016
128 12,288 96 96
Key d_query *d_embed * n_heads * n_layers |= 14,495,514,624
128 12,288 96 96
Query d_query * d_embed * n_heads * n_layers |= 14,495,514,624
128 12,288 96 96
Value d_value * d_embed * n_heads * n_layers |= 14,495,514,624
12,288 128 96 96
Output d_embed * d_value * n_heads * n_layers |= 14,495,514,624
. 19,152 12,288 96
Up-projection n_neurons * d_embed * n_layers = 57,982,058,496
o 12,288 49,152 96
Down-projection | d_embed * n_neurons * n_layers = 57,982,058,496
50,257 12,288

Unembedding

n_vocab * d_embed

= 617,558,016

A2 = k; q1
LT
a3 = ks 1
A4 = kg 41

s = kd 1

Q1 ki vi q2 ky v, q3 ks vz qs ky vy qs ks vs
A A A A A A A A A A A A A A &

wel WX wWV| wWe|wWX| (wv| wWe| wWkX|w"| We| wWX||wV| we|wX|w"

Embedded

Tokens] & X3 X4 £E

Tokens | bought an apple watch

11 Az1 U371 Az Oy kir
A1 App A3 Ayp Us) k;—
Qi3 U3 Q33 A43 As3 = | ki 41 92 43 44 qs
A1,4 A24 (34 (Xgq Asy ki
Q15 25 A35 Uas5 Ass k;'

Q1 ki vi q2 ky v, q3 ks vz qs ky vy qs ks vs
A A A A A A A A A A A A A A &

wel WX wWV| wWe|wWX| (wv| wWe| wWkX|w"| We| wWX||wV| we|wX|w"

Embedded
Tokens] & X3 X4 £E

Tokens | bought an apple watch

1

—y— T
N Q1,1 Q2,1 d31 Qg1 sy kq
A1 Azp A3 Az s k;—
Qi3 U3 Q33 A43 As3 | =| ki d1 42 43 44 qs
1,4 Q24 A34 Agq Asy ki
Q15 Q5 (35 (a5 s k;'
Softmax]])
! ! !
0‘1,1 21 Az “4’1,1 Us 1
! ! ! ! !
A1 Az A3 Uyp Us)
! ! ! ! !
— 13 A3 33 Ay3 As3
! ! !
051,4 A4 A34 “4’1,4 Us 4
! ! ! ! !
A5 A5 U35 Ays Uss
d1 ki vi q2 k; v, q3 ks vz qs ks vy, qs ks vs
A A A A A A A A A A A A A A& 4
Wl WK (WV| we| wk| \wv| we| wk|\wv| we| wkX|wV| we|wkX||w"
Embedded X X X X X
Tokens 1 2 3 4 5
Tokens | bought an apple watch

1

- [T
Vdg Q1,1 Q2,1 d31 Qg1 sy kq
A12 Az U3 Uy Usp k;—
Qi3 U3 Q33 A43 As3 | =| ki 41 92 43 44 qs
1,4 Q24 A34 Agq Asy ki
Q15 Q5 (35 (a5 s k;'
Softmax] . .
A k= [k k%, k%]T E[k'] = E[q'] = 0
11 Az A3 Ay Asq = 1 .2 ... dk]T , ,
Ao Qzp A3, @y so q=19.9"".q Var[kl] = Var[q‘] =1
5| a3 a3 a33 (43 a§,3 dp
Ai4 Oz Q34 Qg Asy T i i
A 724 T34 a4 T, — Tl =
Qs A5 Q35 Ays Ass kiq= k'q Var[k'q] = dy
i i=1
g1 ki vi Q2 ky vy q3 ks vs qs ks vy qs ks vs
A A A A A A A A A A A A A A& 4
WO WX WY wel Wkl w"| wel Wk wV| we| wk| wY| welwk|wv
Embedded X X X X X
Tokens 1 2 3 4 5
Tokens | bought an apple watch

| 4 e

Softmax

. A’

Q1 ki vi q2 ky v, q3 ks vz qs ky vy qs ks vs
A A A A A A A A A A A A A A &

wel WX wWV| wWe|wWX| (wv| wWe| wWkX|w"| We| wWX||wV| we|wX|w"

Embedded

Tokens] & X3 X4 £E

Tokens | bought an apple watch

1

N

Softmax

=KT

!/
Output features

d1 ki vi q2 k; v, q3 ks vz qs ks vy, qs ks vs

A A A A A A A A A A A 4 A A A

Wl WK (WV| we| wk| \wv| we| wk|\wv| we| wkX|wV| we|wkX||w"
Embedded
Tokens] & X3 X4 £E
Tokens I bought an apple watch

1

N

Softmax

AI

l‘

Output features

=KT[0]

= |W?| x; x, x5 x5 X5

K = |[WX| x; x, x5 x4 xc
V

= |[WV | x1 x2x3 X4 X5

Q1 ki vi q2 ky v, q3 ks vz qs ky vy qs ks vs
A A A A A A A A A A 4 A A A 4
wel WX wWV| wWe|wWX| (wv| wWe| wWkX|w"| We| wWX||wV| we|wX|w"
Embedded
Tokens 1 X2 X3 X4 X5
Tokens I bought an apple watch

AI

= |W?| x; x, x5 x5 X5

Single-head attention

. K'Q
Attention(Q, K,V) = V softmax

Jax

K = |[WX| x; x, x5 x4 xc
V

WV | %1 x5 X3 X4 X5

Q1 ki vi q2 ky v, q3 ks vz qs ky vy qs ks vs
A A A A A A A A A A4 A S S
wel WX wWV| wWe|wWX| (wv| wWe| wWkX|w"| We| wWX||wV| we|wX|w"

Embedded
Tokens = = = X4 Xs

Tokens | bought an apple watch

vy

Analogy for Q, K, V

Library system

Imagine you're looking for information on a specific topic (query)

Each book in the library has a summary (key) that helps identify if it contains the information
you're looking for

Once you find a match between your query and a summary, you access the book to get the
detailed information (value) you need

Here, in Attention, we do a “soft match” across multiple values, e.g. get info from multiple
books (“book 1is most relevant, then book 2, then book 3, etc.”)

. K'Q
Attention(Q, K,V) = V softmax

Jax

= |W?| x; x, x5 x5 X5

Single-head attention

. K'Q
Attention(Q, K,V) = V softmax

Jax

K = |[WX| x; x, x5 x4 xc
74

WV | %1 x5 x3 x4 X5

Wy || we | |wo we | (Wi | (wY Wity | Wiy

WQ € de)(d

WiK = dexd

K
Attention(Q,K,V) =V softmax(

Q
Vi

€ de)(d

€ de)(d

Single-head attention

SN RQ

Attention

Head, € R%*"

we

WK

WV

X1 X2 X3 X4 X5

X1 X3 X3 X4 X5

X1 X3 X3 X4 X5

Q K
WoZ1| Wh-1

Single-head attention

KT0Q
Attention(Q, K,V) = V softmax X = x xx % x

Jax

w?| € RUkxd W |X (WX wy (X

K X (:
Wit| € de d | Attention]

dyXn
WiV e Rdvxd Head, € R

Attention(Q,K,V) =V softmax(

€ de)(d

€ de)(d

Single-head attention

KT

Jax

= |W?| x; x, x5 x5 X5

K = |[WX| x; x, x5 x4 xc
V

WV | %1 x5 x3 x4 X5

W1Q wi | [wy WhQ | Wy | Wi-s

Attention]

Attention]

Head, € R%*"

Head, € R%*" Head,,_, € R%*™"

Attention(Q,K,V) =V softmax(

€ de)(d

€ de)(d

Single-head attention

KT

Jax

= |W?| x; x, x5 x5 X5

K = |[WX| x; x, x5 x4 xc
V

WV | %1 x5 x3 x4 X5

W1Q wi | [wy WhQ | Wy | Wi-s

Attention]

Attention]

Head, € R%*"

Head, € R%W*" Head,_, € R%*"

Single-head attention

Attention(Q,K,V) =V softmax(

Multi-head attention

e Rpdxhdy

€ de)(d

€ de)(d

KT

i)

SN RO

we

WV

I/VO Q W, OK WOV I/Vl Q WlK W1V
Wy’ we (K | v wi K |w |V
v A\ 4 \ 4 \ 4 y v
Attention] Attention

Head, € R%*"

MultiHeadedAttention(Q,K,V) =

[Head, |

| Headh_l_

Head, € R%*"

Head,

X1 X2 X3 X4 X5

X1 X3 X3 X4 X5

X1 X3 X3 X4 X5

Wity | Wiy

%
Wh-1

Headh_1 € Rdvxn

Feed Forward Network (FFN)

FFN(x)
ReLU(

|

A

X +

) +

1

A

4

Feed Feed Feed Feed Feed
_ Forwa rd Forward Forward Forward Forward)
Encoder #1 1 1 1 1
Multi-head Self-Attention
A

Embedded x X
Tokens X1 X2 X3 4 5
Tokens I bought an apple watch

Feed Forward Network (FFN)
FFN(x)

—_ WzReLU(Wlx + bl) + b2

I III i II ReLU
w,

W,
D D A
Feed Feed Feed Feed Feed
_ Forwa rd Forward Forward Forward Forward)
Encoder #1 1 1 1
Multi-head Self-Attention
A
Embedded x X
Tokens X1 X2 X3 4 5
Tokens I bought an apple watch

1 1

A A 4

[Feed Feed Feed Feed Feed |
. Forward Forward Forward Forward Forward)
A

Encoder #1 + 1 *
Multi-head Self-Attention
\ “ J
Embedded
Tokens] & X3 X4 £E

Tokens I bought an apple watch

1 1

A A 4

[Feed Feed Feed Feed Feed |
. Forward Forward Forward Forward Forward)
A

Encoder #1 i 1 1
Multi-head Self-Attention
\ “ J
Embedded
Tokens = X3 X4] B

Tokens watch an apple | bought

Positional encoding

|

A

1

A

4

Feed Feed Feed Feed Feed
_ Forwa rd Forward Forward Forward Forward)
Encoder #1 1 1 1 1
Multi-head Self-Attention
A

Embedded x X
Tokens X1 X2 X3 4 5
Tokens I bought an apple watch

. Positional encoding

Position k o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

23 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

1 <«— Slow oscillating

22| o 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Dimension

21 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

20 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

<+— Fast oscillating

Positional L
embedding '
Embedded |
Tokens f = = = X4 Xs

Tokens I bought an apple watch

Positional encoding

A sin(wok) 7

Position k cos(Wok) <+—— Fast oscillating
sin(w; k)
Angular frequency cos(w, k)

w; = N—Zi/d

Dimension

sin (v;%_lk)
N = 100,000 ! _cos (Wd_lk)_

2

<+—— Slow oscillating

Index in the sequence

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Positional
embedding

Embedded |
Tokens d

Tokens I bought an apple watch

https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

. . Normalized Range
Positional encoding .

N AT sinwok) 1 B Unique identifier, unlimited length
osItion
C‘_’SEWO:)) p Relative positions as linear transform
sin(w;
Angular frequency
iy y cos(YV1k) [sin(wi(k+)] _ [sin(wik) + cos(w;k)
w; =N : cos(w; (k + Ak) cos(w;k) — sin(w;k)
sin(wqg k
("4
N = 100,000 cos(wg k
Hlees(Mg-")
Positional 2
embedding '
Embedded |
Tokens d Xq X2 X3 Xy Xc

Tokens I bought an apple watch

. . Normalized Range
Positional encoding .

o[sintwok) 1 M Unique identifier, unlimited length

Position k
C‘_’SEWO:)) B Relative positions as linear transform
sin(w;
Angular frequency
_2i/d d cos(:/vlk) [sin(wi (k+AK)] _ [sin(wk) + cos(w;k)]
w; =N : cos(w;(k + Ak) [cos(w;k) — sin(w; k)
sin (W%_lk) _ [] [sin(wl-k)
N = 100,000 | |cos (Wd 1k) | — cos(w;k)
A Vil i
Positional L P P P P P Pk_l_Ak B MPk
embedding ' 1 2 3 4 5
Embedded |
Tokens f X1 X2 X3 Xy X

Tokens I bought an apple watch

[sin(wgk) 7

cos(mu 1k)

Embedded
Tokens

Tokens

Position

cos(wok)
sin(w; k)
cos(w; k)

sin (WEd k)

MLP

apple watch

k=5

k=4

1 1

A A 4

Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward

4 A A A

Encoder #1

[Multi-head Self-Attention]

S P & b ¢
Embedded |

Tokens fxlpl xZPZ x3P3 x4P4 x5P5

Tokens I bought an apple watch

Positional encoding

Position k t ig;(("v‘;zg | sinusoidal positional encoding
sin(w; k
Angular frequency cos((‘l//vvllk)) Relative positional encoding
= N-2i/d d :
Wi : KERPLE RoPE CoPE
sin (W%_lk)
N = 100,000 | [cos (Wd 1k) NoPE YaRN FIRE
| -1)]
Positional L P P P P P
embedding ' 1 2 3 4 5
Embedded |
Tokens f X1 X2 X3 Xy X

Tokens I bought an apple watch

A A § A A

[Feed Feed Feed Feed Feed |
| Forward Forward Forward Forward Forward |

A A A

Encoder #2
l NEURAL !
NETWORKS

—_——
LAYERS

VAN

Encoder #1

e A

Multi-head Self-Attention

. J

Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward

4 A A A

STACK
MORE
LAYERS

[Multi-head Self-Attention]

S P & b ¢
Embedded |

Tokens fxlpl xZPZ x3P3 x4P4 x5P5

Tokens I bought an apple watch

Encoder #2

A

A

4

J

4

-

Feed

N Forward

J |

A

Feed Feed
Forward Fo rwa rd

| Feed

Forward

A

4

N

uIt| head Self-Attention

Feed
Forward

N

STACK
MORE
LAYERS

NEURAL
NETWORKS
w

A
v
H
&
—_——
LAYERS 7

Encoder #1

Embedded
Tokens

Tokens

(

Feed

Forward

J |

Feed
Forward

Feed
Forward

J L) |

Feed
Forward

Feed
Forward

J |

J\

4

A

A

A

Multi-head Self-Attention

]

?

X, Py

szz

bought

|

Sl S S
an apple watch

« Residual connection D D

A A A

/L) g (L) (L) » (L)

L W W W/ W

Feed Feed Feed Feed Feed

Forward Forward Forward Forward Forward

A A A A A

) g (L) » (L) » (L)

W W W W/ W

[Multi-head Self-Attention]
A A A A A
\\

P S Sal P Sl
Embedded |

Tokens fx1P1 X, P, X3 P; X, P, X5 Ps

Tokens I bought an apple watch

s Residual connection D D D D D

y

P 3 D‘ P 49‘
‘E}U EXELELES
; -

AN

G

EE

Embedded |
Tokens 1 Py Xz P, X3 P3 X4 P, X5 Ps

Tokens I bought an apple watch

Residual connection

Layer normalization

|

A

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]
> (@) > (@) > (@D > (@)
o i % U % %
Feed Feed Feed Feed Feed

Forward Forward Forward Forward Forward

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]
> (@) (@) > (@D))
0 i % U % U

[Multi-head Self-Atteption]

A

Embedded
Tokens

Tokens

1

d Xq P1

szz

bought

LN

x3P3

an

[
j

X, P,

apple

L

Xt P5

watch

s Residual connection

Layer normalization

|

A

LayerNorm(x) =

x — mean(x)

Y <\/ Variance(x) + e) L

v,B ER

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]
) > (D) > (@D))
o i % i % % %
Feed Feed Feed Feed Feed

Forward Forward Forward Forward Forward

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]
> (@ > (D) > (@D))
0 i % i % % U

[Multi-head Self-Atteption]

A

Learnable parameters

Embedded
Tokens

Tokens

1

dx1P1

szz

bought

LN

x3P3

an

[
j

X, P,

apple

L

Xt P5

watch

Residual connection

Layer normalization x x .
P
(L) (L) o (L)) o (L)
L Norm(x) . T\ U W W W
ayer _ Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward
A A A
y(X — mean(x) > + ﬁ (LayerNorm | |(LayerNorm]| |[LayerNorm | | LayerNorm | |[LayerNorm |
\/ Variance(x) + € @ @ @ 1) P
[Multi4head Self-Atteption]
]/”8 €ER A A A A A
LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm
Learnable parameters B
(?—‘ E ® &>
Embedded |
Tokens lel x2P2 X3 P3 x4P4 X5 P5
[Xiong et al. 2020] Tokens I bought an apple watch

On Layer Normalization in the Transformer Architecture

»
L
»
L
»

(L) (L) » (L) g (L)
W W W W 0/
Feed Feed Feed Feed Feed
Forward Forward Forward Forward Forward
A A A A 7y
[LayerNorm | [LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]
(L) (L) » (L) » (L) (L)
W W W W 0/
[Multi-head Self-Attention]
A A A A A

LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm
— %—J
% & E &

Embedded |
Tokens X Py x; P, X3 P; X4 P, X5 Ps

Tokens I bought an apple watch

Embedded
Tokens

Tokens

Encoder #6

A

Encoder #5

A

Encoder #4

A

Encoder #3

A

Encoder #2

A

Encoder #1

L
?

dx1P1

L

X, P,

bought

L

X3 P;

an

L

X, P,

apple

L

X5 P

watch

Embedded
Tokens

Tokens

Encoder #6

A

Encoder #5

A

Encoder #4

A

Encoder #3

A

Encoder #2

A

Encoder #1

L
?

dx1P1

How

L

X, P,

are

L

X3 P;

you

L
X, P,

?

Embedded
Tokens

Tokens

Encoder #6

Encoder #1

L
?

dx1P1

How

I P

R Y 0z 88 0I5 ... ? <end>

[Softmax
T
[Linear
?
Encoder #L Decoder #L
Encoder #1 Decoder #1
P P P P P
t t
dx1P1 szz x3P3 x4P4 dZ1P1
¥ ¥

How are vyou ? <start>

BB

Encoder #L

Encoder #1

A

¢ ¢ ¢ 9
?

dXy Py X3 P, X3 P; X, P,
\

How are you ?

Mem

fR % 0z 68 05 -

? <end>

Softmax

T

Linear

?

Decoder #L

Decoder #1

T

L

A

L

dZy Py Z; P,

\

<start>

iR

I P

fR 47 Bz 6@ 0% ... ? <end>

[Softmax
T
3 [Linear
?
Encoder #L Decoder #L
Encoder #1 Decoder #1
P P P P P P
t t
d Xy P, X, P, X3 P; X, P, dZ, P, Z, P,
¥ ¥

How are you ? <start> R

I P

fR 4 Iz 68 0% ... ? <end>

[Softmax
T
E E E E [Linear

?
Encoder #L Decoder #L
Encoder #1 Decoder #1
P P P P P P @
t t
dx1P1 szZ x3P3 x4P4 dZ]_Pl Z2P2 Z3P3
¥

;
How are vyou ? <start> R /83

e nll .

fR 45 Iz g8 05 ... ? <end>

[Softmax
T
[Linear
?
Encoder #L Decoder #L
Encoder #1 Decoder #1
P P P P P P O
t t
dx1P1 szZ x3P3 x4P4 dZ]_Pl Z2P2 Z3P3
¥ ¥

How are vyou ? <start> R /83

e nll .

fR % Nz 68 0% ... ? <end>

[Softmax]
T
[Linear]
?
Encoder #L Decoder #L
Encoder #1 Decoder #1
P P P P P P O &
t t
dx1P1 szZ x3P3 x4P4 dZ]_Pl Z2P2 Z3P3 Z4_P4_
¥ ¥

How are you ? <start> R /83 15 ?<end>

BB

Encoder #L
Encoder #1 Decoder #1
P P P P P P O &
t t
dx1P1 szz x3P3 x4P4 dZ1P1 Z2P2 Z3P3 Z4_P4_
\ \

How are you ? <start> R /53 15 ?<end>

BB

Encoder #L
Encoder #1 [Multi-head Self-Attention
\ A A A A
Decoder #1
P P P P P P O &
t t
ilxlpl szz x3P3 x4P4_ ilZlPl Z2P2 Z3P3 Z4_P4_

How are vyou ? <start> R T [155

[Multi-head Self-Attention]
_ A A A A Y,

Decoder #1
P P O &
T

iz, P, 2, P, z; P, z, P,
!
<start> R & 155

[Multi-head Self-Attention]
_ A A A A Y,

Decoder #1
P P O &
T

iz, P, 2, P, z; P, z, P,
!
<start> R & 155

B

Attention(Q,K,V) =V softmax(

MaskedAttention(Q,K,V) =V softmax(

0

0

0

0

T

Jax

)

T

Jax

KQ+M>

Multi-head Self-Attention

B

A A A A

Decoder #1

T

S B @ @

iz, P, 2, P, z; P, z, P,

<start> R &F 133

\

B

Attention(Q,K,V) =V softmax(

MaskedAttention(Q,K,V) =V softmax(

0

0

0

0

T

Jax

)

T

Jax

0,)

Masked Multi-head Self-Attention

B

A A A A

Decoder #1

T

S B B B

iz, P, 2, P, z; P, z, P,

<start> R &F 133

\

Masked Multi-head Self-Attention
A

4 A

"> Training

I =] - ;
v examples
-7 4

IS = S)

R %

4

-
Decoder #1
@ B €

it

'
<start> {1}

'l o

T
iz, P, 2, P, z; P, z, P,

%5

BB

Kencoder

Vencodel;

A

A

A

A

Encoder #L

Encoder #1

A

G G B P
?

d Xy P, X, P, X3 P; X, P,
!

Ho are you ?

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]

> ()

®
[Feed
Forward

®
] @:rd

®
] @: rd

D
] [Feed]
Forward

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]

» (D)

> (@)

» (D)

» (D)

“\Y

N\

“\Y

Ny

ncoder-dec

bder Attent

on

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]

> (D)

» (@)

> (@)

» (D)

%

T\

S\

T\

Decoder #1

|

Masked Multi-h

ead Self-A

'tention

-

A

A

A

L

T

L

L

iz, P, 2, P, z; P, z, P,

\

<start> R

it

%5

! !
a1 az2 az3 a3 4
4 4 4 A

[Softmax]
kiq, szQZ kgTQZ quZ

L Q¢

\
q>
A
we
[LayerNorm] [LayerNorm]
kl V1 kz %) k3 V3 k4 V4 =C> =<>
A 4 4 4 4 4 A A
WK WV Wk wv| wKwv| wxwv [Masked Multi-head Self-Attention
A A
Decoder #1C ’
P &
T
Encoder #L dZ, P, Z, P,
v

<start> R

/
@21 a2,2 23 az,4
4 4 4 A

[Softmax] ZIZ = WO (az21vy + @220, + Q2305 + WG2av,)

kiq, k3 q, k3 q; kiq,

) QG

Cross-attention

A Encoder-decoder attention
q>
A
we
[LayerNorm] [LayerNorm]
ey vk v vz kv @ —®
A A A A A A A 4
WKWV WX WV WX WVl WX wv [Masked Multi-head Self-Attention]
A A
Decoder #1
P P
T
Encoder #L dZ, P, Z, P,
¥

; 7
I\
(ignore the scaling 1/,/d}, here for simplicity) <start> 1.]

BB

Kencoder

Vencodel;

A

A

A

A

Encoder #L

Encoder #1

A

G G B P
?

d Xy P, X, P, X3 P; X, P,
!

How

are you ?

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]

> ()

®
[Feed
Forward

®
] @:rd

®
] @: rd

D
] [Feed]
Forward

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]

» (D)

> (@)

» (D)

» (D)

“\Y

N\

“\Y

Ny

ncoder-dec

bder Attent

on

[LayerNorm] [LayerNorm] [LayerNorm] [LayerNorm]

> (D)

» (@)

> (@)

» (D)

%

T\

S\

T\

Decoder #1

|

Masked Multi-h

ead Self-A

'tention

-

A

A

A

L

T

L

L

iz, P, 2, P, z; P, z, P,

\

<start> R

it

%5

Kencoder

H E E E Vencoder

Encoder #L
Encoder #1 Decoder #1
P P P P P P O &
t t
d Xy P, X, P, X3 P; X, P, iz, P, 2, P, z; P, z, P,
y {

How are vyou ? <start> R T [155

Kencoder

H E E E Vencoder

Encoder #L

Encoder #1

d

4

T

d Xy P, X, P, X3 P; X, P,

\

How

I:)‘T

§

Bk

are

=

you

I:)‘T

?

Softmax

T

Linear

?

Decoder #L

Decoder #1

d

4

T

t)qj

L

P¢T

P¢T

iz, P, 2, P, z; P, z, P,

\

<start> R

of

1%

Transformer & Multi-Head Attention

Output
Probabilities

Add & Norm

Feed
Forward

I Add & Norm z

Multi-Head
Attention

r—>| Add & Norm |

Feed

Forward) Nx
—]
N Add & Norm
f->| Add & Norm | Ve
Multi-Head Multi-Head
Attention Attention
t t
o J —)
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

“Attention Is All You Need”

Figure 1: The Transformer - model architecture.
https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762

Summary: Attention and Transformers

> Attention weights used to compute the context vector, which is a
weighted sum of the input at different positions

» Context vector is used to update the hidden state of the model,
which is used to generate the final output

» "Pay attention" to different parts of the input, depending on the task
at hand - more accurate and natural-sounding output, esp. when

working with longer inputs (e.g. paragraphs)

Output
Probabilities

((Add & Norm]
J
(‘ N ((Add & Norm |<\
IO Multi-Head
Feed Attention
Forward 7 Nx
N Add & Norm
Add & Norm Ve
Multi-Head Multi-Head
Attention Attention
. J . —
Positional A q Positional
Encoding Encoding
Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Ways Attention was used in the
original Transformer Architecture

* Encoder-decoder cross-attention

* Allow decoder layers to attend all parts of the latent representation produced by
the encoder

* Pull context from the encoder sequence over to the decoder

e Self-attention in the encoder

* Allow the model to attend to all positions in the previous encoder layer
* Embeds context about how elements in the sequence relate to one another

* Masked self-attention in the decoder

* Allow the model to attend to all positions in the previous decoder layer up to and
including the current position (during auto-regressive process)

* Prevent forward looking bias by stopping leftward information flow during training
* Also embed context about how elements in the sequence relate to one another

* A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems (NeurlPS), 2017.

Examples:

E[ﬁ]@@@ﬂ@[f’=@@@@©ﬂ@[f‘ Attention is all you need, T5, BART.
Transiormer
Good for:
Machine translation, summarization. QA
(when input/target are sufficiently different)
Kencoder [Softmax]
Vencoder t
[Linear]
?
Encoder #L Decoder #L

Encoder #1 Decoder #1

Examples:

E[ﬁ]@@@ﬂ@[?’=@@@@©ﬂ@[f‘ Attention is all you need, T5, BART.

Transformer
Good for:

Machine translation, summarization. QA
(when input/target are sufficiently different)

B

Encoder #L

Encoder #1

Examples:

E[ﬁ]@@@ﬂ@?“@[ﬁ]nv W@@Sﬁ@ﬁm@ﬁ BERT, RoOBERTa, DeBERTa, X-BERT

Good for:

Classification, sequence tagging, sentiment
analysis
(Understand text, but not generate them)

Encoder #L

Encoder #1

Examples:

GPT-X (OpenAl), PaLM (Google), LLaMA (Meta)
BLOOM (BigScience)

Good for:

Text generation, multi-round conversation

Decoder-only Transiormer

[Softmax]
?
[Linear]
?
Decoder #L

Decoder #1

Encoder-Decoder Transformer

Deceder-enly Transformer

Softmax

?

Linear

?

Decoder #L

[Softmax
?
[Linear
f
Encoder #L Decoder #L
Encoder #1 Decoder #1
<lnput> <Target>
Different parameters for /

Decoder #1

<Input> <Target> <Input>
¢
Prompting, in-context examples

Shared parameters

Encoder-Decoder

LLaMA-2-Chat (&N

s 148 o
LLaMA [2)\)

Anthropic’
OPT-TML 7N |
EhatGPﬂ@ BLOOMZ[%] Galactica[gM]

pai

e o

BLOOM| 3%|
YalM[Y] G

P@ : PaMG
Closed-Source ()

& GPT-NeoX[e)
LA G
GLaM G\, (Gopher) O™ [ERNTES.0) % 1w |

MT-NLQ 2 L N
urassic-1j 42
GPT-[e}

GPT-Neo[®]

GLM[&E
Switch[¢]

DeBERTalH nTSiC }ﬂ PT-3 G
ELECTRA]

Distill T5
ALBERT BERT[5} BART[¢,\ G

RoBERTa [#,\] FrneD XLNet f€]
@

BERT Qo

En -
(ELVo BT i Ty gL pecoer 0

FastText Glove
Word2Vec

Open CiClosed

Image credit: https://gitF\ub.com/MooIer0410/LLMsPracticaIGuide

LM
Evolutionary
Tree
(2023)
(2022)
(2021)
ELECTRA s
(2020)
ALBERT
RoBERTa[#\)
(2019)

BERT

ELMo [. 1
m ULMF1.T

GLMEY

DeBER

e Tod WS

ERNIE}-

FastText

Flan
uL2 [

ﬁG@

u2lel

P

Switch

mT5(¢] }ﬂ

'l.-,'
e
<

Jen

Glove

Word2Vec

LLaMA-2-Chat [\

Jurassic-2Ji3!
LS B

OPT-IML (0N

urassic-1igs

XLNet fe]

D— S
Galacticale\] Mot

=l)

D Minervd G,
PaLM

GPT-NeoX[@a]
LaMDAG

l RNIES. Q) 11 | >

GPT-J[e)
GPT-Neo(®)

2
5

GPT-2(&] =
]
o
GPT 1[6)) ﬁ
Ll
os
(2]
®
G

mOpen CClosed

Transformers vs. RNNs

Challenges with RNNs Transformers
e Long range dependencies e Can model long-range
e Gradient vanishing and explosion dependencies
e Large # of training steps e No gradient vanishing and explosion
e Sequential/recurrence — can’t parallelize e Fewer training steps
e Complexity per layer: O(n*d?) e (Can parallelize computation!
e Complexity per layer: O(n?*d)

» When sequence length (n) << representation dimension (d), the complexity per layer
is lower for a Transformer model compared to RNN models ; no true for real-world LLMs

Differences in Attention Mechanism of RNN vs. Transformer

Feature

RNN with Attention
(Bahdanau et al. 2015)

Transformer

Attention Type

Additive (Bahdanau) Attention

Scaled Dot Product Attention

Based on decoder hidden state and

Based on dot-product of query and keys

Alignment . :
'9 encoder hidden states (global attention)
Efficiency Processes sequences step-by-step Parallel processing of all positions
Context Weighted sum of encoder hidden Attends to all encoder positions for every

states at each step

output

Self-Attention

Not used

Self-attention in both encoder and decoder

Computational Dependencies for

RNN-Based Encoder-Decoder
Model with Attention

MO,

H

Ch

— =\

e

Recurrence vs. Attention

Transformer Advantages:

e # unparallelizable operations does not
increase with sequence length.

e Each word interacts with each other, so
maximum interaction distance is O(1).

Transformer-Based

M Encoder-Decoder Model

